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Linear Chebyshev Approximation 
in the Complex Plane Using Lawson's Algorithm 

By S. Ellacott and Jack Williams 

Abstract. In this paper we discuss the application of Lawson's algorithm for com- 

puting best linear Chebyshev approximations to complex-valued functions. Some 

numerical examples are also presented. 

1. Introduction and Preliminaries. In this paper we are concerned with the use 
of Lawson's algorithm ([4], [7], [6] ) for computing best linear Chebyshev approxi- 
mations to complex-valued functions. Also, we give some results which relate the best 
approximation on a compact set A in the complex plane to best approximations on 
certain subsets of A. Some numerical examples are also presented including approxi- 
mations by linear combinations of rationals with preassigned poles. 

We consider the class C[A] of complex-valued continuous functions f on a com- 
pact subset A of the complex plane, with If II = maxzEA If(z)l. We assume throughout 
that A contains at least n + 2 points. Let P denote the finite-dimensional subspace of 
C[A] whose basis is 1, 2.. . On. Now let f E C[A] -P; then we seek p* E P 
for which 

Ilfp*lI 1f-pit for allp eP. 

It is known [5, Chapter 2] that p* exists; and if {fo} forms a Chebyshev set on A, 
then p* is unique. 

In practice, this approximation problem could occur in one of the following forms. 
Problem 1. A - S, a simply-connected region bounded by a piecewise smooth 

Jordan curve C; the functions f and {4i} are analytic in S and continuous on S. Then, 
from the maximum modulus theorem, If II = maxzEClf(z)j, so the problem is equiva- 
lent to best approximation on the boundary C. For example, we may wish to obtain 
a best polynomial approximation n~ar zr to eZ sin irz on the quadrant 

S:= {z: IzI < 1, Re(z) > 0, Im(z) > 01. 

Problem 2. A:= {zj: j = 1, 2, . .. , N} on which we wish to approximate the 
values f1 = f(zA), j = 1, 2, . . . , N. For example, the f values may correspond to a set 
of points on the imaginary axis and we seek a best approximation with fbr 1/(z - ar) 

r = 1, 2, . . . , n, where {ar} are preassigned points lying in the left half-plane. 

2. Discretization Theory. In this paper we shall apply Lawson's algorithm to 
the above Problems 1 and 2. Cline (see [2] ) has extended* Lawson's algorithm to 
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apply to a continuum; but the algorithm we discuss here is only applicable to approxi- 
mation on a finite point set. Naturally, we therefore, "discretize" Problem 1 by first 
replacing the boundary curve C by a finite point set Ck which is sufficiently "close" 
to C. Then we compute a best approximation Pk to f on Ck. This process can be 
justified on the basis of the following results, the first of which is due to Cheney [1, 
Chapter 3]. Cheney's result treats real approximation, but the same proof applies to 
the complex case. 

Definition. Let A be a compact subset of the complex plane; then the density 
of the subset Z C A is given by 

jZI = max inf ly - zi. 
zEA yGZ 

THEOREM 2.1 (CHENEY [1]). Let f C-[A] - P and let Pk E P be a best ap- 
proximation to f on the compact subset Zk C A, where IZk I - 0 as k - oo; then 

limk- Ilf - Pk 1l = Ilf - P* 11. If p* is a unique best approximation to f, then 

hmk IIPk - P* 11 = 0. 
As applied specifically to Problem 1, we now give a result which gives some infor- 

mation about the choice of subsets Zk C C. Naturally, for results of this type the 
smoothness properties of both f and the boundary curve C are involved. Here it is 
more convenient to measure the density of subsets Zk C C in terms of the parametric 
representation of C. For many practical problems this measure of density would then 
be directly related to arc length. More general results for real approximation are given 
by Cheney [1 ] . 

THEOREM 2.2. Let C:= {z: z = 'y(t), t E [0, 1], y(O) = y(l)} be a piecewise 
smooth Jordan curve consisting of the smooth arcs Cr, r = 1, 2, . . ., M, and let f 
and { i} be twice continuously differentiable on each arc C,. Let 4-Zk(t) C C, 

k = 1, 2, . .. , be a sequence of finite point subsets which each contain all the points 
of discontinuity of dy(t)/dt, t C [0, 1 ]. If 

1Zk I= max min d(y(tl)' 'Y(t2)) 

satisfies IZk -I O as k a 00, where 

d(y(t1), *(t2)) = mint It, - t2I , 1 - It1 -t21} 

then there exists a positive constant K such that, for k = 1, 2, . . .. 

Ilf-p* II-max f(z)- Pk(Z) < KIZ k I2 

where Pk E P is a best approximation to f on Zk. 

Proof. Consider Zk C C and let h(z) = IfZ) - pk(Z)12. Suppose that Pk is not 
a best approximation to f on C; then we can choose to E [0, 1] for which Ih(&(tO))l = 

If - Pk 112 and y(to) C C - Zk. Consider now the interval (to' ti), ti > to, where 
7(t) E Zk for all t C (to, t1), y(tl) C Zk. (For simplicity we have assumed that t1 < 1, 
otherwise, a simple modification is required.) From the smoothness of h, 



LINEAR CHEBYSHEV APPROXIMATION 37 

dh (l=(to)) 0 => h('y(t1)) 

= h(y(to )) + 1/2(t - to)2 d2 (y(t + O(t - to))), < 0 < 1. 
1 0dt2 0 1 0 

Therefore, 

(2.1) If _p*112 < If-Pk 112 < max If(z) - pk(z)I2 + Y2QkIZk12, 

where Qk = sup Id 2h(,y(t))Idt2 1, and the supremum is taken over y(t) E Cr, r = 1, 2, 
M. But since 1Zk I 0 is also equivalent to the density of the sets tending to zero in 
the sense of Theorem 2.1, we have from the convergence of Pk to p* that Qk < K1 
for some K1. Finally on dividing (2.1) by If - p*II and noting that 

max If(z) -Pk (Z) IIIf - p * 11 < 1, 
ZE3Zk 

the result follows. 
The above theorem shows, for example, that when approximating on a square C, 

the corner points should be included in Z4. Also, in practice, the constant K could be 
estimated with the aid of simple difference approximations to d2h/dt2 throughout 
each Cr, r = 1, 2, . . . , M, thus indicating whether the Zk is sufficiently dense in C. 
(2.1) could also be used to bound If -- PkI. 

3. The Lawson Algorithm. We now consider exclusively approximation on a 
finite point set Z which consists of N distinct points and where now If 11 = 

maxzEzIf(z)I. Lawson's algorithm computes a sequence of best weighted least squares 
approximations, which, under suitable conditions, converges to the best Chebyshev 
approximation to f on Z. The relationship between least squares approximation and 
Chebyshev approximation can be seen most satisfactorily by appealing to the following 
form of a characterization theorem due to Rivlin and Shapiro [8] (also see [5]; in 
fact, the theorem applies to approximation of real- or complex-valued continuous func- 
tions on a compact Hausdorff topological space). 

THEOREM 3.1 ([8], [5, CHAPTER 2]). p E P is a best Chebyshev approximation 
to f E C[Z] if and only if there are r points z1, Z2 .. *, Zr E Zo and r numbers 
W 1 > 0..., Wr >0, O2Wk =1 , r < 2n + I (r < n + I in the real case), for which 

r 

(3.1) Z Wk [f(Zk) P(Zk)] ?i(Zk) = 0, i = 1, 2, .. ., n, 
k=l 

where the extremal set is denoted by 

Zo := {z: IfAz) - PWZI = llf - P 11J Z C Z} . 

This result provides a description of the extremal set ZO; and if {0j} is a Cheby- 
shev set, then we have in addition r > n + 1 [5, Chapter 2]. The theorem illustrates 
the fundamental difference between the real and complex case. In the real case the 
characterization can be achieved in terms of n + 1 points (on which the equi-oscillation 
property is satisfied if {Oi} is a Chebyshev set), whereas in the complex case the exact 
number of points is unknown, n ? _1? r ? 2n ? 1. It is possible to devise an algorithm 
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on the assumption that r = n + 1 and this approach has been pursued in [9] ; however, 
the method does not in general yield best approximations. 

Theorem 3.1 can be viewed in a different way. From Eqs. (3.1), regarded now 
as the "normal equations", it follows that the best Chebyshev approximation on Z is 
also a best weighted least squares approximation on Z with suitably defined weights 
w(z), 2z w(z) =1 (where zero weights have been assigned to points z 4 ZO). Further, 
we note that the sufficiency part of the theorem can be established without the con- 
dition r < 2n + 1. 

If the weights {wr} and points {Zr} C ZO were known, the best Chebyshev ap- 
proximation could be easily obtained by solving the associated least squares problem 
(see Section 6). Lawson's algorithm may be regarded as an iteration scheme for com- 
puting these {wr} and {Zr}. However, the fact that the above theorem is so funda- 
mental, that is, it is applicable to very general spaces, strongly suggests that any algorithm 
based on the result would not be particularly efficient. This seems to be the case in 
practice (see Section 6). 

We now define the set of weight functions 

W: {w: Z RN I L w(z) = 1, w(z) > O for all z E Z}. 

Lawson's algorithm consists of an iteration on W which is defined as follows. 
(a) Choose w1 E W such that w'(z) > 0 for all z E Z. 
(b) Set 

k+1 ( ) (Z)le() , k-12,. zE Z, 
EW k(Y) le kly)l Z 

where ek = / _ pk and pk is a best weighted least squares approximation to f on Z, 
that is, pk minimizes (2zwk(Z)lf(Z) _ p(Z)12)1/2 over p E P. This procedure will be 
referred to as the LI algorithm. 

We note that wk+i CZ W, but wk+ 1(z) = 0 is possible for some z C Z. Also, the 
definition of the algorithm requires no condition on the basis {Oi}. 

A proof of the convergence in the real case can be conveniently found in [6], in 
which it is necessary to assume that {fki is a Chebyshev set. The proof is long (and is 
not easy) but can be appropriately modified to establish convergence in the complex 
case. Summarizing, we have, subject to (a) and (b), where {Oi} is a Chebyshev set, 
the following results. 

(i) The sequence {Pk} converges to p* which is a best Chebyshev approxima- 
tion to f on Z1 C Z, where 

00 

Z1 fn Yk and Yk:= {Z: Wk(Z) > 0, Z E Z}. 

Z1 contains at least n + 1 points. 
(ii) The sequence O(wk) = ok = (2zWk(Z)If(Z) _ pk(Z)12)1/2 is strictly mono- 

tonically increasing (unless convergence takes place in a finite number of iterations) 
and 
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0* = lim ok = max If(z) - p*(z)I. 
k--+oo ZGZ1 

(iii) If during the course of the iteration, wk(z) is set to zero for some z (this 
could happen "accidentally") then, from (i), Z1 # Z and so we may have 0* < 

maxZGZ If(z) - p*(z)I, that is, p* is not the best approximation on Z. In this case the 
algorithm can be restarted with the weight function, 

fw(z) = (I - ) Jim wk (Z) + MU(z), 0 < X < 1, 

where u(z) = 1 for all z E Z - Z1 for which If(z) - p*(z)I > 0*; u(z) = 0 otherwise. 
For X sufficiently small 0 > 0* and after a finite number of restarts, the best approxi- 
mation to f on Z is obtained. 

4. Rate of Convergence. In the real case Lawson [4] and Rice-Usow [7] have 
observed that ek and 0k converge linearly to e* and Ile* II, respectively, with asymptotic 
convergence factor p*, where 

p* = max(p = ie*(z)i/IIe*II < 1, z E Z). 

Cline [2] has proved that for every X > p* there is an M > 0 such that, for all k, 

(4.1) IIP* Pk II< ?Mk and liek II -IIe*II< ?Mfk. 

In the complex case some numerical experiments have indicated that the rate of 
convergence can be slower than linear. For example, we considered the case f(z) = 

(sin Z/z)l/2 with Z consisting of 100 points evenly distributed around the boundary 
of the semidisc {z: jzI < 1, Re(z) > 0}. Then approximation by a cubic polynomial 

(Oi = z- 1) required 3, 6, 42 and > 100 iterations to obtain, respectively, 1, 2, 3 and 
4 correct significant figures in the norm of the error function. 

It is possible to extend some of Cline's preliminary results to the complex case 
(subject to the basic assumption that {f/O} is a Chebyshev set). For example, his Lem- 
mas 3 and 5 show that at points z not in the extremal set ZO, the weights tend to 
zero as rapidly as a geometric progression with ratio related to le*(z)I/l Ie* II. The re- 
sults of the form (4.1) fail, however, because, with one exception, the algorithm does 
not converge in one step on pure extremal sets. The exception is the case of extremal 
sets consisting of only n + 1 points and is of little value in practice. In fact, as the 
following example shows, sublinear convergence is possible on pure extremal sets con- 
sisting of at least n + 2 points. 

Example. A:= { 1, -1, i}, f = z, 01-=1. Here p* = 0 and ZO = Z. If the initial 
weights at 1 and - 1 are equal and the weight at i is nonzero, then 

3+W1 
= wk/(w* ? 1 ? (W3)2) Iekil = 1+ (wk)2, IIp* - = W*. 

It is clear that there does not exist a constant p < 1 such that 

IIP* - P+ill P IIp* -Pk for all k. 

Unlike the real case, it is quite possible in practice for Z0 = Z (see [5, Chapter 2] 
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for examples on the unit disc). In contrast to the above example, our numerical exper- 
ience with such problems is that the convergence is not generally "very slow". Some 
examples of-this type are presented in Fable f. 

5. Acceleration of Convergence. Essentially, we wish to make wk(z) tend to 
zero as rapidly as possible except at points in some determining set ZO C ZO on which 
p* is also the best Chebyshev approximation to f. In the real case various schemes for 

accelerating this convergence have been proposed ([7], [6] ). When {Oi} is a Chebyshev 

set, one such scheme recommended in [7] sets values of wk(z) to zero on the basis 
that lek(z)l is "small" in relation to liek 11. The success of this scheme depends essen- 

tially on the fact that the extremal set (usually n + 1 points) can be fairly well "regog- 
nized" during the course of the iteration. Unfortunately, on the basis of the problems 

we have treated, this device cannot be recommended in the complex case. Here 

lek(z)I can be close to Ilek 11 for many z E Z; this feature is closely related to the fact 
that ZO can be "large" in relation to Z. 

Another modification [7] is to redefine the LI algorithm by replacing stage (b) 
with: 

k~ )-w k(Z)ie k(Z)12_Z 
(c) Set w I(z) = 

() 
k = 1, 2,.. ., z E Z. (c) E~~~~~~w (y)Iek~)2 

z 

This scheme, the L2 algorithm, if it converges, makes wk(z) tend to zero like (p*)2k 

and so is asymptotically equivalent to two steps of the LI algorithm. From (c), 

(O k+1)2 =wk+1 (y)le k+112 = :(wk( ek 2 l ek+1 1 2)/(Ok)2; 

and it is now easy to show (using the Cauchy-Schwartz inequality) that 0k+ 1 > 0k 

k = 1, 25 ... . This is an important part of the convergence proof for the LI algo- 
rithm. Unfortunately, we have observed examples which do not converge (similarly 

for the real case [41, [7] ). When it does converge, however, the acceleration can be 
quite striking, particularly for examples in which ZO = Z. Examples are given in 

Tables 1 and 2. 
As an effective acceleration scheme for the complex case, we recommend the 

procedure of applying alternate steps of LI (stage (b)) and L2 (stage (c)). For this 

scheme the L3 algorithm, we have also that k+1 k 0k k = 1, 2. 
THEOREM 5.1. Let {qi} be a Chebyshev set, and let f E C[Z] - P. Suppose 

that the positive integers are divided into two sets Ii and I2 so that if k E Ii step 
(b) is performed, otherwise step (c) is performed. Given w1 E W, w1 (z) > 0 for all 
z E Z, then a sufficient condition for the sequence {p* } to converge to p*, the best 

Chebyshev approximation to f on a set Z1 C Z, is that Ii be infinite. If Z1 $ Z, then 
the algorithm may be restarted with the restart procedure ((iii), Section 3). The best 

Chebyshev approximation to f on Z is then obtained after a finite number of restarts. 
Proof. The proof that the restart procedure is effective is the same as in the LI 

case (a continuity argument plus the fact that Z is finite). Therefore, in order to sim- 

plify the proof of the theorem we shall suppose that throughout the iteration no value 
of wk(z) is accidentally set to zero. We can then deal with best Chebyshev approxi- 
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mation to f on Z (as opposed to some subset Z1). 
Using the same argument as in the convergence proof of the LI algorithm, we can 

show that {pk} is uniformly bounded. Now consider any convergent subsequence 
ski}. Since the wk are also restricted to a compact set, we may assume that {wki} 
is also convergent and let i' = limit+ owki. Using the fact that {fi} is a Chebyshev 
set, we can easily show (as in the LI convergence proof) that iv is nonzero at (at least) 
n + 1 points. Therefore, in a neighborhood of wi, the best least squares approximation 
p is a continuous function of the weight w; thus ii corresponds to 3 where p 
limit pki 

Suppose now that i i p*, the best Chebyshev approximation to f on Z. By the 
uniqueness of 1i, 0(w&) < I1f - p* 11. We shall now examine in W a certain neighborhood 
of iv' and, by using the fact that II is infinite, establish a contradiction. 

The sequence {6(wk)} is bounded and monotonically increasing, so limkOO-(wk) 
= 0(w). Consider now T C W, where 

T:= {W: 1i(w) - 0(w) < A, w E W}; 

where Z = 'Amin{6(Cv), I1f - p*1 - 0(i)}. Then 6(w) > 0 for all w C T and by con- 
tinuity T is compact. Given w C T with corresponding best least squares approxima- 
tion p, define the weight function F(w) C W obtained by one step of the LI algorithm 

F(w)(z) = z( - p( )I Z CZ; 
yE=Z 

and let 6(w) = 6(F(w)) - 6(w). Then, 6(w) > 0 for all w C T; also, since p is con- 
tinuous on T, F is continuous on T so there exists wo C T such that 6 = 6(wo) = 

infwGT6(w). Since the LI algorithm is convergent ((i), (ii), Section 3), a weight func- 
tion w* corresponding to p* satisfies 6(w*) = lIf - p* 11 and F(w*) = w*. Consequently, 
wo cannot be such a w*; and hence, 6 > 0. We have thus shown that for any w C T 
one step of the LI algorithm must increase the least squares error by at least 6. 

Now consider the original sequence {o(wk)} (generated by the algorithm) along 
with the subsequence {6(wki)}. Choose K such that, for k > K, I0(wk) - 0(ii)I < 
min(6/2, 2). Since I, is infinite, we may also choose ko C II with ko > K, so that for 
i sufficiently large 

6(wk ) > (w 0 ) 6(F(w 0)) 

Since wko C T 
k. k 

O(W ') > O(W ?) + 5 > (0(W^)-a5/2) + 5 > 0(wv); 

but this contradicts the fact that 6(wk) tends to 0(wv) from below. 
We have thus shown that every convergent subsequence of {pk} tends to the best 

approximation p*. Since {pk} is uniformly bounded this is sufficient to guarantee that 
pk p* as k - oo, which completes the proof. 

6. Computational Details. Numerical Examples. For the three algorithms LI, 
L2 and L3 we have not observed any examples in which values of wk(z) are acciden- 
tially set to zero. (Rice and Usow [7] report for the LI algorithm, in the real case, that 
only very rarely is it necessary to use the restart procedure.) 
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TABLE 1 

Approximation on the unit disc (100 points on the boundary). All the points are 
extremal points, ZO = Z; = zi 1, i = 1, 2, n. 

Correct LI L2 L3 

f(z) n significant iterations iterations iterations 
figures 

5 3 9 2 3 

e: 7 6 17 3 5 
9 6 18 3 5 

11 5 14 3 4 

3 5 19 2 5 
4 6 19 2 5 

1 
z2 7 5 18 2 5 

9 6 20 2 5 
11 4 14 2 3 

TABLE 2 

Approximation on {z: 1zI < 1, Re(z) > 0} (100 points on the boundary), Z0 = Z. 

?i~zi-l~=1, 2,...n. 

Correct LI L2 U 
f(Z) n significant 

iterations iterations iterations 
figures 

7 1 5 2 3 
11 1 3 2 3 

1 5 2 59 34 39 
7 2 12 7 8 
9 1 4 3 5 

sinN/z 4 3 42 21 29 
Adz- 5 1 5 3 3 
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TABLE 3 

Rational approximation with preassigned poles. Approximation of f(z) 
[1 + (z + 1)21-1/2 using 25 points on {z: z = iy, -20 ?y < 20}. The letter 
G indicates that more than 30 iterations we required. 

0. Correct L3 
/ = 1, 2, . .. , n n significant iterations 

figures 

1 2 
4 2 5 

3 26 

1 3 
5 2 G 

1 3 G 
(1 ?z) I 

1 3 
6 2 5 

3 G 

1 5 
7 2 G 

3 G 

1 2 
4 2 27 

3 G 

1 1 
1 5 2 7 

(Z +j) 3 12 

1 2 
6 2 15 

3 G 

1 5 
7 2 17 

3 G 
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The recommended L3 algorithm consisting of alternate steps of LI and L2 has 
bHein aRplie& su-cessffiv t- many problems Snme izesulis. -am presented in thfe tahJmp 
and comparisons are made in Tables 1 and 2. For each case, wi(z) = 1/N for all z E 
Z. The weighted least squares problems were solved by using the complex analogue of 
the Golub algorithm [3]. In the tables we have indicated the number of iterations re- 
quired for a certain number of correct significant figures in the error norm; this was 
made possible by using the inclusion interval 

ok < lilt-P* 11 < llf _ Pk 

for the final computed iteration. 
It is also interesting to compare the behavior of the LI and L3 algorithms when 

applied to the example of Section 4, for which some computed results are as follows. 

jlp* - p5 11 =0.1342 (LI), 0.0956 (L3); Ile5 11 = 1.0090 (LI), 1.0046 (L3), 
lip* - p50l I = 0.0187 (LI), 0.0125 (L3); lie5 II = 1.000175 (LI), 1.000078 (L3). 

Given that a complex least squares routine is available, the L3 algorithm is easily 
programmed. It must be accepted, however, that the ultimate convergence of the 
algorithm is in general very slow; but often good approximations are obtained in a 
small number of iterations. We are not aware of an algorithm which is faster. 

7. Acknowledgment. S. Ellacott wishes to thank the Science Research Council 
for their support in providing a Research Studentship. Also the authors wish to thank 
the referee for his valuable suggestions and in particular for providing the example in 
Section 4. 

Department of Mathematics 
Brighton Polytechnic 
Brighton BN2 4GJ, England 

Department of Mathematics 
University of Manchester 
Manchester M13 9PL, England 

1. E. W. CHENEY, Introduction to Approximation Theory, McGraw-Hill, New York, 1966. 
MR 36 #5568. 

2. A. K. CLINE, "Rate of convergence of Lawson's algorithm," Math. Comp., v. 26, 1972, 
pp. 167-176. MR 45 #7921. 

3. G. H. GOLUB, "Numerical methods for solving linear least squares problems," Numer. 
Math., v. 7, 1965, pp. 206-216. MR 31 #5323. 

4. C. L. LAWSON, Contributions to the Theory of Linear Least Maximum Approximations, 
Thesis, UCLA, 1961. 

5. G. G. LORENTZ, Approximation of Functions, Holt, Rinehart and Winston, New York, 
1966. MR 35 #4642; erratum, 36, p. 1567. 

6. J. R. RICE, The Approximation of Functions. Vol. 2: Nonlinear and Multivariate Theory 
Addison-Wesley, Reading, Mass., 1969. MR 39 #5989. 

7. J. R. RICE & K. H. USOW, "The Lawson algorithm and extensions," Math. Comp., 
v. 22, 1968, pp. 118-127. MR 38 #463. 

8. T. J. RIVLIN & H. S. SHAPIRO, "A unified approach to certain problems of approxi- 
mation and minimization," J. Soc. Indust. Apple. Math., v. 9, 1961, pp. 670-699. MR 24 #A3462. 

9. J. WILLIAMS, "Numerical Chebyshev approximations in the complex plane," SIAM J. 
Numer. Anal., v. 9, 1972, pp. 638-649. MR 47 #2784. 


	Cit r38_c39: 


